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Electrical properties of Sb2O3–CaO–V2O5 glasses
and glass-ceramics

M. AMANO, K. SUZUKI, H. SAKATA
Department of Applied Chemistry, Tokai University 1117, Kitakaname, Hiratsuka,
Kanagawa 259-12, Japan

The d.c. conductivity (r) of (a) glasses prepared by the press-quenching method and

(b) glass-ceramics (crystallized glass) produced by post-heat treatment was investigated in

the system Sb2O3—CaO—V2O5 and their conduction mechanism was studied. The glasses were

n-type semiconductors with r"2.6]10!6
&2.8]10!5 S cm!1 at 333 K for varying glass

compositions. The conduction was attributed to small polaron hopping in the adiabatic

regime. The estimated carrier density was 1.7&3.8]1021 cm!3 for V2O5"70&80 mol %

and the mobility was 3.5]10!9 to 6.9]10!8 cm2 V!1 s!1.

Crystallization raised the conductivity by a factor of 103. The crystalline product in the

glass-ceramics was Ca0.17V2O5. The glass-ceramics were n-type semiconductors, and the

conduction was interpreted by a superposition of the small polaron hopping in the

crystalline and glassy phases.
1. Introduction
Electrical conduction of oxide glasses with transition
metal oxides (TMO), e.g. V

2
O

5
, as a major component

has been understood by the small polaron hopping
(SPH) model [1, 2]. This phonon-assisted hopping of
electrons accompanies a valence change between V4`

and V5` in glasses. In hopping, the V—O—V spacing
(R) affects activation energy for conduction and thus
electrical conductivity (r).

Recently there has been a considerable interest in
the study of electrical conduction in ternary vanadate
glasses [3—7]. A high conductivity of 3.4]10~3 S cm~1

at 373 K was reported for 80V
2
O

5
—12 PbO—8 P

2
O

5
glass (mol%) [3].

Also, the conduction of vanadate glasses contain-
ing two transition metal oxides has been investigated
[8—10].

Our previous study on Sb
2
O

3
—SrO—V

2
O

5
glasses

[11] without traditional network former prepared by
press-quenching method, gave conductivities ranging
from 7]10~7 to 10~5 S cm~1 at 300 K. Hence, we ex-
pected more conductive glasses with more closely
packed structures and lower basicity when substituted
Ca for Sr. Ca2` has a smaller ionic radius (0.099 nm)
than Sr2` (0.116 nm) in the Sb

2
O

3
—SrO—V

2
O

5
system

[11].
The present work aims at determining the electrical

conductivity of Sb
2
O

3
—CaO—V

2
O

5
glasses and clarify-

ing the conduction mechanism. We were also inter-
ested in the conductivity of glass-ceramics (crystallized
glasses) prepared by post-heat treatment of the as-
quenched glasses, since from previous reports [11, 12],
we observed that the crystallization raised remarkably
the conductivity of the ternary antimony— and bis-

muth—vanadate glasses [11, 12].
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2. Experimental procedure
Reagent grade (99.9%) chemicals V

2
O

5
, CaCO

3
and

Sb
2
O

3
were mixed in prescribed composition for

15 min in a mortar. Each glass batch (5 g) was melted
in air in a porcelain crucible at 1000 °C for 1 h in an
electric furnace. The melt was then poured onto cop-
per blocks maintained at room temperature and
quenched by pressing immediately with another
copper block. Thus, the glass samples of about 1 mm
in thickness and 5 cm2 in area were obtained by the
melt-quench technique, similar to our earlier works
[6, 11, 12].

The samples were used for various measurements
without annealing. The amorphous nature of the sam-
ples were verified by X-ray diffraction (Philips PW
1830). Glass transition temperature, ¹

'
, and crystalli-

zation temperature, ¹
#
, were measured using differential

thermal analysis—differential scanning calorimetry
(DTA—DSC) apparatus (Rigaku, DSC 8230/DTAS 300).
Density (d) of the glasses was measured by the
Gay—Lussac method, the measurement error being
within 2%. The fraction of the reduced V ion in the
glass, i.e. C

7
"V4`/V

505!-
, was determined by titration

method using KMnO
4

and FeSO
4
(NH

4
)
2
SO

4
. Elec-

trical conductivity (d.c.) was determined by the four-
point probe technique with Ag paste electrodes with
a spacing of 1 mm, a constant d.c. current of 0.1 lA
being applied during measurements.

3. Results and discussion
3.1. Glass-forming region and oxygen molar

volume
Fig. 1 shows the glass formation region of Sb O —
2 3
CaO—V

2
O

5
glasses. Glasses could be obtained in the

4325



Figure 1 Glass-forming region for Sb
2
O

3
—CaO—V

2
O

5
glasses.

(d) glass, (m) glass-crystal. (Zone A is the glass-forming region for
Sb

2
O

3
—SrO—V

2
O

5
glasses [11].)

composition range: 0(Sb
2
O

3
(25 mol%,

5(CaO(40 mol%, and 60(V
2
O

5
(90 mol%.

In the system Sb
2
O

3
—SrO—V

2
O

5
[11], glasses were

obtained for 0(Sb
2
O

3
(10 mol%, 15(SrO(45

mol% and 55(V
2
O

5
(80 mol%, so the substitu-

tion of CaO for SrO extended the glass-forming
region. This was reported also in another non-conven-
tional bismuth-cuprite glasses added with CaCO

3
or

SrCO
3

[13]. The ¹
'

and ¹
#

of the present glasses
measured were ¹

'
"310&330 °C and ¹

#
O350 °C.

The oxygen molar volume »*
0

for the present glass-
forming system is expressed as follows:

»*
0
"[M

V205
!16C

V
)X#M

C!O
½#M

S"2O3
Z]/

]d[5!C
V
)X#½#3Z] (1)

where M is the molecular weight, X, ½ and Z are the
mole fractions of V

2
O

5
, CaO and Sb

2
O

3
, d is the

density of the glasses. The calculated results for »*
0

are
shown in Fig. 2.

With an increase in V
2
O

5
content, »*

0
decreased.

It is known that »*
0

correlates with ¹
'

[14]. In
Fig. 2»*

0
"13.0&13.8 cm3mol~1 for V

2
O

5
"85&70

mol%, which corresponded to ¹
'
"330&310 °C.

An increase in »*
0

means looser packing in the glass
structure, resulting in a decrease in ¹

'
, and as a result,

a decrease in thermal stability of the glass [14].
The higher ¹

'
of the present glasses than those

for Sb
2
O

3
—CaO—V

2
O

5
glasses [11] (¹

'
"280&282°C

for V
2
O

5
"87.5&70 mol%) suggests larger »*

0
of

the latter glasses. The decrease in »*
0

, in contrast,
produces a decrease in V—O—V spacing, which causes
an increase in conductivity for larger V

2
O

5
content as

shown in Fig. 3.

3.2. Reactions in glass melt
It is known that Sb

2
O

3
can reduce V5` to V4`,

resulting in conductivity in the solid glasses.
Munakata et al. [15] reported that the reduction of

V5` to V3` does not occur in the melts. Hence,
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Figure 2 Oxygen molar volume, »*
0

, against V
2
O

5
content. (n)

5CaO, (s) 10CaO, (h) 15CaO (mol %).

Figure 3 Compositional dependence on electrical conductivity r at
333 K.

assuming the following reactions in the glass melts for
the present glasses

2V
2
O

5
#Sb

2
O

3
P4VO

2
#Sb

2
O

5
(2a)

2V5`#Sb3`P2V4`#Sb5` (2b)

The fraction of the reduced-V ion, C
V

was calculated
(C

V #!-
) and compared with the experimental C

V
. The

experimental C
V

values in Table I were 70&95%
of C

V #!-
excepting those for three samples (Nos 8, 10

and 11). Accordingly the reactions (Equation 2a,b) are
possible in the melts as well as in Sb

2
O

3
—TeO

2
—V

2
O

5
glasses [14]. Formation of VO

2
structural unit

was also reported in V O —P O glasses on adding

2 5 2 5

Sb
2
O

3
[16].
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3.3. Effects of glass composition on
conductivity

No d.c. polarization was observed in the present
glasses. Seebeck coefficient measured for
20Sb

2
O

3
·5CaO · 75V

2
O

5
(mol%) and 5Sb

2
O

3
·

10CaO · 85V
2
O

5
(mol%) glasses was !32 to

!39 lVK~1 and !127 to !101 lVK~1 respec-
tively for temperatures from 460 to 425 K, which
indicates the glasses to be n-type semiconductors.

Fig. 3 shows the effect of glass composition on
r at 333 K. With an increase in V

2
O

5
content for

fixed Sb
2
O

3
content, r increased. However it de-

creased with an increase in Sb
2
O

3
for fixed CaO

content.
Fig. 4a shows the effect of the basicity of glass

(CaO/Sb
2
O

3
) on r. The conductivity decreased

with an increase in CaO/Sb
2
O

3
from 0 to 0.5 for

V
2
O

5
"80&85 mol%. Similar results were also re-

ported for P
2
O

5
—BaO—V

2
O

5
glasses [15]. The

decrease in r with the increasing basicity of the glass
corresponded to the decrease in V4`; this was con-
firmed by the effect of CaO/Sb

2
O

3
on C

V
in Fig. 4b

where C
V

decreased for CaO/Sb
2
O

3
"0.9 to 3.

Figure 4 (a) Effect of the basicity of glass on conductivity. (d)
70 V

2
O

5
mol%; (s) 75 V

2
O

5
mol%; (n) 80 V

2
O

5
mol%; (#)

85 V
2
O

5
mol%. (b) Effect of the basicity of glass on C

71 . (d) 70 V
2
O

5
mol%; (s) 75 V O mol%; (n) 80 V O mol%; (#) 85 V O
2 5 2 5 2 5
mol%.
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Thus we obtained the glasses with conductivities
(r"2.6]10~6&2.8]10~5 S cm~1) which were
higher than those for Sb

2
O

3
—SrO—V

2
O

5
glasses [11].

3.4. Conduction mechanism
The reciprocal temperature dependence of ln(r¹ ) is
presented in Fig. 5. Good linearities are seen. The
activation energy for conduction, ¼, obtained from
the slope of the curves in Fig. 5 is given in Table I.

The conductivity of TMO containing oxide glasses
is expressed by the small polaron hopping model
[1, 2] as follows

r"(r
0
/¹ ) exp(!¼/k¹ ) (3)

r
0
"[m

0
Ne2R2C(1!C)/k] exp(!2aR) (4)

with R as the mean V—O—V spacing, N the transition
metal ion density ("R~3), C the fraction of reduced
transition metal ion [C"C

V
"V4`/(V4`#V5`)],

e the electron charge, k the Boltzmann constant, a the
tunnelling factor, and m

0
the phonon frequency.

It has been observed that small polaron hopping
conduction in the adiabatic regime took place gener-
ally in vanadate glasses for V

2
O

5
'50 mol% [5—7],

where r
0

is unchanged for the variations in glass
composition. In that case, the slope between log r
and ¼ should be !1/2.303k¹, since logr"

log r
0
!¼/2.303k¹ from Equation 3. Fig. 6 shows

the relationship between log r and ¼ at 333 K, indi-
cating that the experimental slope for different CaO
contents agrees with the theoretical slope. This con-
firms the adiabatic small polaron hopping for the
present system of glasses. The values of activation
energy (¼) as estimated from the data in Fig. 5 are
given in Table I.

Table I gives ¼"0.381&0.440 eV at 333 K from
the data in Fig. 5. For SPH, ¼ is expressed by [1, 2],

¼"¼
H
#¼

D
/2 (for ¹'h

D
/2) (5)

where ¼
H

is the hopping energy, ¼
D

the disorder
energy and h

D
the Debye temperature. Since

¼
D
(0.1 eV [7, 17], we have ¼

H
"0.3&0.42 eV

for ¼"0.381&0.440 eV (Table I) assuming ¼
D
"

0.05 eV.

Figure 5 Temperature dependence of conductivity for glasses
with different compositions (mol%). (]) 10Sb

2
O · 5CaO · 85V

2
O

5
;

(h) 15Sb O · 5CaO · 80V O ; (e) 5Sb O · 15CaO · 80V O ; (n)

2 3 2 5 2 3 2 5

20Sb
2
O

3
·10CaO · 70 V

2
O

5
.
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Figure 6 Relationship between log r
333 K

and activation energy ¼.
(n) 5 CaOmol%; (s) 10 CaO mol%; (h) 15 CaO mol%.

Next, we discuss carrier concentration, N
#
, and hop-

ping mobility, l, of the glasses. For adiabatic hopping,
l is given by [1, 18]

l"l
0
exp(!¼

H
/k¹ ) (6)

where l
0
"m

0
eR2/k¹. Also we know

r"eN
#
l (7)

We calculated N
#
and l from Equations 6 and 7 with

log r, R, and ¼
H

values estimated from Equation
5 using ¼ values in Table I assuming ¼

D
"0.05 eV.

Fig. 7 shows N
#
and l as a function of V

2
O

5
concen-

tration. N
#

decreased with an increase in V
2
O

5
concentration from 75 to 85 mol% while l increased.
Comparing these N

#
and l values with those for

TeO
2
—Sb

2
O

3
—V

2
O

5
[6] and TeO

2
—ZnO—V

2
O

5
[19]

glasses, we found the present glasses to have higher
N

#
and smaller l values, and the increase in N

#
caused

higher conductivity. Very small l&10~8 cm2V~1 s~1

indicates a strong localization of d-electrons at V4`

ion; this satisfies the condition of electron localization
(l;10~2 cm2 V~1 s~1) [20].

In these glasses, N
#
&1021 cm~3 and l changed by

one order on varying glass compositions (Fig. 7). This
indicates the dominant factor determining r to be
hopping mobility.

3.5. Formation and conductivity of
glass-ceramics

The glass-ceramics were produced by crystallizing
the glasses by heat treatments in air at 360 °C for 3
and 10 h. Fig. 8 gives the temperature dependence
of conductivity for glass-ceramics obtained by the

post-heat treatments of the as-quenched glasses. The



Figure 7 Compositional dependence of carrier density N
#
and mo-

bility l at ¹"333 K. (n) 5 CaO, (s) 10 CaO, (h) 15 CaO (mol%).

Figure 8 Temperature dependence for conductivity of glass-
ceramics (crystallized glass). The glass-ceramics samples were pre-
pared by heat treatment of the glass samples at 360 °C for
3 h. (n) 5Sb

2
O

3
· 10CaO · 80V

2
O

5
(mol%) glass-ceramics; (#)

20Sb
2
O

3
·10CaO · 70V

2
O

5
(mol%) glass-ceramics; (e) 5Sb

2
O

3
·

10CaO · 85V
2
O

5
(mol%) glass; (h) 20Sb

2
O

3
· 10CaO · 70V

2
O

5
(mol%) glass.

crystallization confirmed by X-ray diffraction (XRD),
raised r by three orders, compared with those of the
as-quenched glasses (Table I). Such remarkable in-
crease in conductivity has been also reported in other
ternary vanadate glasses [4, 11, 12]. The linear rela-
tionship between ln(r¹ ) and ¹~1 was found to be
similar to Sb

2
O

3
—SrO—V

2
O

5
[11], and

Bi
2
O

3
—SrO—V

2
O

5
[12] glasses.

With an increase in r by crystallization, the ac-
tivation energy for conduction was found to be

¼"0.206&0.275 eV at 333 K, which was lower
Figure 9 X-ray diffractograms (CuKa) for glass-ceramics. The sam-
ples were prepared by heat-treatment at 360 °C for 3 h. (a)
Sb

2
O

3
:CaO:V

2
O

5
"20 :10 :70 (mol%); (b) Sb

2
O

3
:CaO:V

2
O

5
"

15 :10 :75 (mol%); (c) Sb
2
O

3
:CaO:V

2
O

5
"5 :10 :85 (mol%).

than those for the as-quenched glasses where
¼"0.381&0.440 eV at 333 K.

The Seebeck coefficient measured for 5Sb
2
O

3
·

10CaO · 85V
2
O

5
(mol%) glass-ceramics gave !0.19

to !0.17 lV K~1 between temperatures 460 and
425 K, indicating the glass-ceramics to be n-type
semiconductors.

X-ray diffractograms for the glasses are shown in
Fig. 9. Peaks due to a crystalline phase are seen. The
peaks in the sample c are identified to be Ca

0.17
V
2
O

5
in reference with JCPDS card No. 26-1165. The sam-
ples a and b were considered to include Ca

0.17
V
2
O

5
and other crystalline compounds because some differ-
ent peaks appeared. However, no peak due to Sb

2
O

3
was observed.

We considered that the generation of Ca
0.17

V
2
O

5
in

the glasses during the heat treatment was in accord-
ance with the following reactions

Sb
2
O

3
#2CaO"Sb

2
O

5
#2Ca (8a)

V
2
O

5
#2Ca"Ca

2
V
2
O

5
(8b)

i.e. the Sb
2
O

3
reduces CaO in the glass, resulting in

generation of Ca
2
V
2
O

5
crystal which is almost similar

to the Ca
0.17

V
2
O

5
crystal detected by XRD.

It is known that the conduction for M
x
V
2
O

5
was

due to hopping of small polarons as reported for
b-Na

x
V
2
O

5
[21]. Accordingly, the conduction as

a whole of the glass-ceramics presenting the linearity
of ln(r¹ ) against ¹~1 was considered to be due to
a superposition of SPH in Ca

0.17
V
2
O

5
crystal and

that of the glass phase, similar to antimony and bis-
muth vanadate glasses and glass-ceramics [11, 12].

4. Conclusions
Glasses in the system Sb

2
O

3
—CaO—V

2
O

5
were pre-

pared by a press-quenching method and their d.c.
conductivity was investigated. The glass-ceramics
from these glasses were obtained by post-heat treat-
ment of these glasses, and the conductivity was deter-
mined. With decreasing V

2
O

5
content, the oxygen

molar volume »*
0

of the glasses increased. The glasses
were n-type semiconductors, and the conductivity
at 333 K was from 2.6]10~6 to 2.8]10~5 S cm~1.

The conduction was due to adiabatic small polaron
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hopping of electrons. The estimated carrier concentra-
tion was 1.7&3.8]1021 cm~3 for V

2
O

5
"70&

80 mol% and the hopping mobility was 3.5]10~9&

6.9]10~8 cm2 V~1 s~1. The factor determining the
conductivity was hopping mobility. The relatively
high conductivity was due to high carrier concentra-
tion.

Crystallization by heat treatment of the glasses
raised the conductivity by an order of 103. The crystal-
line product was Ca

0.17
V
2
O

5
. The conduction of the

glass-ceramics, which are n-type semiconductors, was
interpreted by a superposition of small polaron hop-
ping in Ca

0.17
V
2
O

5
crystal and that in the glass.
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